Effects of Electric Fields on the Combustion Characteristics of Lean Burn Methane-Air Mixtures
نویسندگان
چکیده
In this work, the effects of the electric fields on the flame propagation and combustion characteristics of lean premixed methane–air mixtures were experimentally investigated in a constant volume chamber. Results show that the flame front is remarkably stretched by the applied electric field, the stretched flame propagation velocity and the average flame propagation velocity are all accelerated significantly as the input voltage increases. This indicates that the applied electric field can augment the stretch in flame, and the result is more obvious for leaner mixture. According to the analyses of the combustion pressure variation and the heat release rate, the peak combustion pressure Pmax increases and its appearance time tp is advanced with the increase of the input voltage. For the mixture of λ = 1.6 at the input voltage of −12 kV, Pmax increases by almost 12.3%, and tp is advanced by almost 31.4%, compared to the case of without electric fields. In addition, the normalized mass burning rate and the accumulated mass fraction burned are all enhanced substantially, and the flame development duration and the rapid burning duration are remarkably reduced with the increase of the input voltage, and again, the influence of electric field is more profound for leaner mixtures. The results can be explained by the electric field-induced stretch effects on lean burn methane-air mixture. OPEN ACCESS Energies 2015, 8 2588
منابع مشابه
Properties of Lean Turbulent Methane-Air Flames With Significant Hydrogen Addition
We examine the combustion of mixed H2-CH4-air fuels using two-dimensional simulations that incorporate detailed kinetics and a mixture-averaged model for differential species transport. The mixtures range from lean H2-air at φ=0.37 to lean CH4-air at φ=0.7. For each mixture, we compute the quasi-steady propagation of a flame into flow with superimposed low-level turbulent fluctuations. We exami...
متن کاملPremixed flame ignition by transient plasma discharges
Flame ignition by short-duration (≈ 50 ns) transient plasma, or corona, discharges was investigated for methane-air, propane-air and butane-air mixtures at atmospheric and elevated pressures. Such discharges produce a larger fraction of high-energy electrons, yield more spatially distributed energy and deposit energy in the gas more efficiently than conventional arc discharges do. We show that ...
متن کاملAn Experimental and Theoretical Study of the Effects of Excess Air Ratio and Waste Gate Opening Pressure Threshold on Nox Emission and Performance in a Turbocharged CNG SI Engine
Turbocharged CNG engines produce high NOx emission due to the fuel type and high combustion temperature. In this research, the effects of lean-burn and waste gate opening pressure threshold on NOx emission are studied theoretically and experimentally at WOT condition as well as 13-mode ECE-R49 test cycle. A code is developed in MATLAB environment for predicting engine NOx and the results are va...
متن کاملAn Experimental Study of the Effects of Platinum on Methane/Air and Propane/Air Mixtures in a Stagnation Point Flow Reactor
A stagnation-flow burner facility was used to study the catalytic surface reactions of premixed combustion systems at atmospheric pressure. The configuration serves as an important platform to investigate the interaction between homogeneous and heterogeneous reactions with independent control of the characteristic chemical and physical residence time scales. Methane/oxygen/nitrogen and propane/...
متن کاملCatalytic Combustion in Microchannel for MEMS Power Generation
Catalytic combustion is a promising technique for producing thermal energy in MEMS(Micro Electro-Mechanical Systems) scale electrical power generators. To examine the feasibility and possible benefits of catalytic combustion in MEMS-scale channels, catalytic reactions in small diameter (1 mm) flow reactor tubes at low Reynolds numbers are simulated by using the commercial fluid dynamics code FL...
متن کامل